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TURTLE HYPOXIA

Winter submergence at 3°C

Metabolism reduced
to 10 % of normoxia

Anoxic survival for
months at 7°C
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PRINCIPLES OF
ANOXIA SURVIVAL

1. Metabolic rate reduction

2. Control by protein kinases
(SAPKs, 2" messenger PKs)

3. Selective gene activation
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» Covalent modification by phosphorylation

» Families of protein kinases: PKA (cAMP),
PKG (cGMP), CaM (Caz*), PKC (Caz, PL,DG)

* SAPKs : daisy chain phosphorylations

* Regulation is via interconversion of active
Vs subactive forms of protein substrates

AONXIA INDUCED
CHANGES

Protein Synthesis slows to 1%
Pumps & Channels closed

Energy Production slows to 5%
Energy Utilization slows to 2%
Few 'SAP' kinases activated

Gene ‘inactivation’ (l MRNA )
Few Genes activated (1-2%)
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PROTEIN PHOSPHORYLATION
& GLYCOLYSIS

* Protein kinase A, PKG
» Protein kinase C (Brain)
» Protein phosphatase 1, 2A, 2C

Storey, K.B. 1996. Metabolic adaptations supporting anoxia tolerance in
reptiles: recent advances. Comp. Biochem. Physiol. B 113, 23-35.

ANOXIA INDUCED
CHANGES

Protein Synthesis slows to 1%
Pumps & channels closed
Energy Production slows to 5%
Energy Utilization slows to 2%
Few ‘SAP’ kinases activated

Gene ‘inactivation’ ( l MRNA )
Few Genes activated (1-2%)

ROLE OF

TRANSCRIPTION

» Global rate of mRNA synthesis depressed.
Method: nuclear run-on

» Are selected genes up-regulated ?

e TO ASSESS GENE UPREGULATION:

What new mRNASs are created?
- cDNA library
- Gene Chip
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ANTIOXIDANT
DEFENSE

* liop St.o.rage: . C. picta hatchlings
- Ferritin (H & L chains) e nea

- Transferrin receptor 2

» Antioxidant enzymes
- SOD (1)
- GST (M5, A2)
- GPX (1, 4)
- Peroxiredoxin 1

Storey KB. 2005. Gene hunting in hypoxia and exercise.
In: R.C. Roach et al., eds. Hypoxia and Exercise, Springer, NY

GENE CHANGES IN

_TURTILE ANOXIA _

* CDNA Library & Chip
(~2% putative up-regulated)

-Transcription Factors

- Mitochondrial Genes

- Protease inhibitors

- Shock proteins (Hsps)
- Antioxidant enzymes
-Ferritin H& L

The Good And The Bad Of Oxygen

The Good
15y

1) Fuels normal aerobic metabolism

2) More than 200 enzymes use O,

3) Eliminates toxins (xenobiotics)
via cytochrome P450

4) Produce O, via photosynthesis

The Bad

i

1) Reactive oxygen species (ROS)
damage macromolecules, deplete
GSH, vitamins

2) ROS produced by normal aerobic
metabolism & must be destroyed

3) Heavy metals catalyze formation of
particularly dangerous ROS

4) Associated with disease & ageing
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Oxygen Superoxide Hydrogen Hydroxyl * CDNA Library & Chlp

Peroxide Radical

(~2% putative up-regulated)

Superoxide -forms when O, acquires a single electron

- relatively short-lived -Transcription Factors

Hydrogen Peroxide -formed from superoxide v - Mitochondrial Genes
- not aradical, islong-lived iy - Prot hibit
- passes readily through membranes E . rotease innhibitors

- Shock proteins (Hsps)
- Antioxidant enzymes
- Ferritin H & L

Hydroxyl Radical - formed from H,O, (with Fe?*or Cu*)
- HIGHLY REACTIVE - very short-lived
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Transcription Factors signals

Master regulators
of gene
expression

CELL o TF- Acivition  TF
; 00 x x
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Respond to intra-
or extracellular
signals

Bind to promoter
regions of specific
genes

Mediate DNA

transcription to
mRNA

NF-kB

CONTROL:

NF-kB dimer is sub-
active in cytoplasm,
bound to IkB

Stimulatory Signals

STRESS: /

IkB phosphorylated .

.
D

& degraded

Free NF-kB dimer:
- moves to nucleus
- binds to DNA

- transcription of
downstream genes

4

NUCLEUS

CYTOPLASM

PROTEASOME

0

Nuclear Factor kappa B (NF-kB)

e Dimeric transcription factor, composed of
subunits including p65, p50, p52, c-Rel and

Rel B

e Activated by: Stress ,Cytokines
Free radicals, UV

¢ Functions :

- Immune response, Development
- Cell growth, Apoptosis, Stress response

IkB
Phosphorylation

e kB is (P) in
liver & brain at
5h of anoxia

Elevated (P) of
IkB frees NF-kB
dimer to move
into the nucleus

Relative protein levels

Relative protein levels

P-1kB protein levels in turtle tissues

25 4

*
M Control
3 4

B 5h Anoxic

15 o

1 4

05

Heart Kidney Muscle

Time course for IkB
phosphorylation in liver




Relative mRNA levels

Turtles: NF-kB

NF-kB dimer protein levels

Relative protein levels

m Contral
m 5h Anoxic

20 anoxic

Protein Levels

e NF-kB p65 and
p50 are
upregulated
during 5 h of
anoxia

NF-kB: Target Gene Levels

Relative mRNA levels of
NF-kB target genes
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Ferritin H

Ferritin heavy chain and
Heme oxygenase-1 (HO-1)
are upregulated after 5 h
of anoxia

NF-kB

P65 moves into
nucleus in
anoxia

Relative protein levels

DNA-binding
activity of p65
elevated after 5
& 20 h of anoxia

NF-kB pathway
is activated in
turtle liver and
brain in anoxia !
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P65: Subcellular distribution

Ferritin heavy chain

» Sequesters iron

» Can hold up to 4,500 atoms of iron
» 24 subunits: light (19 kDa) and heavy (21 kDa)
* Limits iron-catalyzed ROS production via the

Fenton reaction

0,+e == 0,  superoxide radical

02'-+ H.0 === HOO'+OH"  hydroperoxyl radical |

HOO' + e” +Ht —’ H,0, hydrogen peroxide
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H,0,+ e e ‘OH+OH" hydroxyl radical radicals

Fe () + O, === Fe (1) + O,

Fe (II) + H,0, === Fe (II[) + 'OH+OH" Fenton reaction

0, +H0, == 0, + 'OH+OH"

Haber-Weiss reaction




Ferritin and Heme Oxygenase -1 THE BRAINS OF THE
OPERATION
Help minimize free iron levels in cells

= Ferritin: Binds iron; Heavy & Light chains _ @ C— @

= Heme oxygenase -1: A, I INTEGRATION I

- Degrades heme, a source of redox active iron

- Free iron then stored into ferritin
N 3 BIOCHEMISTRY
Iron can be a source of oxidative stress:
« Catalyzes production of Hydroxyl radicals via Fenton

reaction:
2+ . . .
H.O. Fe -oH + on- Hydroxyl radical is very reactive and
responsible for most oxidative stress-
mediated damage

Hypoxia / Ischemia

» Sensitive Animals (most mammals)
- Energy deficit (high ATP demand)
- Disruption of ions and depolarization
- Release of excitotoxic GLU,
- Excess intracellular Ca2*
- Oxidative Stress (+ reperfusion)
- Cell Death

e Tolerant Animals (e.g. turtles, carp )
- Decrease ATP demand (Metabolic Arrest)
- Adenosine as a Retaliatory Molecule




MAMMAL TURTLE CARP
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ANOXIA SURVIVAL
IN TURTLE BRAIN
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BRAIN GENES
Up-regulated in turtle anoxia
(DNA array)

* GABA transporter
e GABA receptor

Adult T. s. elegans

BRAIN GENES
Up-regulated in turtle anoxia
(DNA array)

e Adenosine receptor
* 5’Nucleotidase

Adult T. s. elegans

ANOXIA SURVIVAL
IN TURTLE BRAIN

Lutz PL & Milton SL. 2004. J Exp Biol 207: 3141-3147

BRAIN GENES

* GABA transporter
* GABA receptor

e Adenosine
receptor

* 5'Nucleotidase
e Serotonin receptor
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cDNA ARRAY SCREENING

A. RNA Isolation

E. Imaging

Lo o @ Samplc A> B
=) (=] Sample A =B
‘ ) Sample B = A

B. cDNA Generation ®

C. Labeling of Probe

Reverse Transcriptase

D. Hybridization
to Array
—_—

Major effects of anoxia on cellular
energetic turnover
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Glucosa + ADP + P, ATP —= ADP+Pys .

Glucose + ADP + P, ATP —= ADP+ P+ fneri)

(‘J\’ja.‘lnlel

pH decreases

Ca® and Mg™* |

Overgaard, J. et al. J Exp Biol 2007;210:1687-169¢

ANTIOXIDANT ENZYMES

free radical generation

GS-electrophile

s -
superoxide . glutathione
4
-catalase GSH NADP(\

I hi

Ho0 + 0 reductase
20 + U2 selenium Y g
dependent| G556 S NADPH
glutathiong|
peroxidase
H0 + 02

Fed + OH™ + OH ————— peroxidation

Willmore WG & Storey KB

Haber-\eiss reaction - FEBS J 272, 3602-14 (2005)

Fe salt catalyst -Am J Physiol 273, R219-25
7 + —_———————— 0, + 0H™ + OH (2997).

02 Hgog 02 OH OH - Mol Cell Biochem 170, 177-

185 (1997)

TRANSPORTERS / RECEPTORS

GABAsrgic
neuron

GABA receptors

Postsynapic
neuron

13



