RBioFS: Machine learning (random forest)-based gene selection [User Manual] Hanane Hadj-Moussa and Jing Zhang, 2016.

*Note: This techbull will refer you various websites and to the RBioFS webpage that is hosted on our lab website (<u>http://kenstoreylab.com/?page_id=2542</u>).

I. Installing R and RStudio

To run RBioFS you must first install R on your computer, then install RStudio the user interface for R. Links to both of these programs are on the lab website (<u>www.kensotreylab.com</u>) \rightarrow Research \rightarrow Research Tools \rightarrow RBioFS (<u>http://kenstoreylab.com/?page_id=2542</u>).

A. Installing "R"

- 1) To install '**R**' visit (<u>https://www.r-project.org</u>) and then select your CRAN preferred CRAN mirror, we will use the University of Toronto's (<u>http://cran.utstat.utoronto.ca/</u>).
- 2) Download the version of R that corresponds with your operating system. For example, if you are working on a Windows computer click Download R for Windows → install R for the first time → Download R 3.3.1 for Windows
- 3) Save the installation .exe file \rightarrow open the file \rightarrow follow the R for Windows 3.3.1 Setup Wizard's simple installation instructions.

*Note: You should install all the installation components and make sure to accept the default start-up options.

B. Installing RStudio

- 1) To install **RStudio** visit (<u>https://www.rstudio.com/</u>). Click **RStudio** → **Desktop** → **Download RStudio Desktop**
- 2) Download the RStudio version that corresponds with your operating system. For example, if you are working on a Windows computer click **RStudio 0.99.903 Windows Vista/7/8/10**
- 3) Save the installation .exe file \rightarrow open the file \rightarrow follow the RStudio Setup Wizard's simple installation instructions.

*Note: Once the program has installed you should locate your RStudio shortcut and place it on your desktop.

II. Setting up RBioFS

Open the RStudio application, this will be the platform you will use to run RBIoFS. The picture below is a breakdown of the different RStudio quadrants and panels. **RStudio is case-sensitive.**

- To setup the R Script text editor go to File → New File → R Script. The text editor is where you should prepare your R script before running your commands in the console. The text editor also allows you to run multiple commands at the same time (as long as you highlight all the commands you want to run).
- 2) To use the latest version of RBioFS we need to first install **devtools**, this package contains some of the various dependencies that RBioFS needs to run. This is a one-time installation, to install 'devtools' rewrite the command below in the text editor. install.packages("devtools")
 - *Note: You must be connected to the internet. You should rewrite all the commands written in this techbull and not just copy them into the text editor. Microsoft word has altered the formatting and syntax of these codes and if you copy/paste this into RStudio, your command will not run as R Script has unique quotation marks. If you copy/paste then make sure you rewrite your quotation marks.
- 3) To run your R commands, you have two options:
 - a. **R Script text editor**, (preferred): Highlight the command you want to run and press Ctrl+Enter. Or place your text cursor on the command you want to run and press Ctrl+Enter. If you separate your command into different lines then make sure all the different commands are highlighted and that they can
 - b. Console: Copy your command from your text editor to the Console and press Enter.
- 4) Once your command has been successfully installed you should receive a message that reads something like this:

The downloaded binary packages are in

C:\Users\Hanane\AppData\Local\Temp\Rtmp4gUWDW\downloaded_packages

5) Run the following command to install **Bioconductor** (needed to run RBioFS), otherwise skip this step: source("https://bioconductor.org/biocLite.R") biocLite() For help with installing Bioconductor, visit (<u>https://www.bioconductor.org/install/</u>)

- 6) Now you are ready to install the RBioFS package. Run the following command: devtools::install_github("jzhangc/git_RBioFS/RBioFS", repos = BiocInstaller::biocinstallRepos())
- 7) You may run into a few errors as the current version of **devtools** does not contain all the dependencies that RBioFS needs, which means you need to manually install the missing packages.
- Here are a few examples of errors and solutions, in this first one I was missing the **scales** package so I installed it manually:

```
Error in loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]])
: there is no package called 'scales'
install.packages("scales")
```

After I installed the missing package (scales) I re-ran the RBioFS installation command in step 5.

Error in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck
= vI[[j]]) : there is no package called 'sandwich'</pre>

Now, I am missing the package (**sandwich**), so I installed it with the command below and then re-ran the RBioFS installation command from step 5. Repeat this process until you have installed all the missing packages.

install.packages("sandwich")

- 8) The next step is to setup your working directory, this is where you will place all your input data files and where all your plots, stats, and graphs will be exported to. In this example my working directory file is on my desktop and it's called "RBioFS stuffs". To setup your working directory run the following command and replace "C:\Users\Hanane\Desktop" with your folder address: <u>For Windows</u>: setwd("C:\\Users\Hanane\Desktop\\RBioFS stuffs") <u>For Mac and Linux</u>: setwd("C:\Users\Hanane\Desktop\RBioFS stuffs")
- 9) In the 'Files, Plots, and Packages' quadrant of the graph you should select 'Packages' and then find RBioFS in the list. Once you click on RBioFS you will be redirected to a page with the RBioFS documentation and all the help files for the different functions. If you get stuck using one of the commands use these help files to trouble shoot.
- 10) If your RBioFS stops working or there is an error that you have spent the last 3 weeks troubleshooting, then you should email the developer <u>jzhangcad@gmail.com</u> and ask him nicely for help.

File layout

Format: csv

2 - 2	Filter													
	SampleID	Condition	dgl-miR- ⁼ let-7f-5p	dgl-miR- 1a-5p	dgl-miR- 1b-5p	dgl-miR- 10b-5p	dgl-miR- 16-3p	dgl-miR- [‡] 18a-3p	dgl-miR- ³ 20a-5p	dgl-miR- ² 21a-3p	dgl-miR- 22-5p	dgl-miR- ³ 23a-5p	dgl-miR- ³ 26a-5p	dgl-miR- [÷] 27a-5p
Control.1.1	Control.1.1	control	0.11190995	0.002383542	0.002820877	0.05379724	0.009063634	0.08077205	0.13679458	0.6656084	0.03721601	0.03380627	0.46552676	0.01998478
Control.1.2	Control.1.2	control	NA	0.003903241	0.003641357	NA	0.008476861	0.07031616	0.15414938	0.6286915	0.03491059	0.03459015	0.49653253	0.01969414
Control.2.1	Control.2.1	control	0.10776942	0.003421941	0.002178203	0.04467675	0.009056922	0.09235496	0.13899680	0.8224800	0.04485433	0.03801253	0.47693178	0.02621919
Control.2.2	Control.2.2	control	N/A	0.003404393	0.003237942	NA	0.011286178	0.09299734	0.15677298	0.7959151	0.04781522	0.03705494	0.51859333	0.02683424
Control.3.1	Control.3.1	control	0.06178795	0.001899035	0.001980194	0.06600755	0.011137533	0.10414508	0.14287847	1.3669317	0.04601862	0.06251752	0.30628346	0.02966780
Control.3.2	Control.3.2	control	NA	0.002950592	0.003332281	NA	0.010973620	0.10856769	0.15407398	1.3620858	0.05105282	0.06552714	0.28648931	0.02691668
Control.4.1	Control.4.1	control	0.10155391	0.005370459	0.002657407	0.05360694	0.009956980	0.12158187	0.25091706	1.0141519	0.04111087	0.04040757	0.47788463	0.03005951
Control.4.2	Control.4.2	control	N/4	0.006303695	0.003616004	NA	NA	0.13678671	0.21003632	1.0395482	0.03817431	0.04649464	0.49774289	0.03127912
Torpor.1.1	Torpor.1.1	torpor	0.06219157	0.001090033	0.001017847	0.02511691	0.009941763	0.04249195	0.06427207	0.4138845	0.03260618	0.01915703	0.26681574	0.01096216
Torpor.1.2	Torpor.1.2	torpor	NA	0.001005065	0.001634836	NA	0.009138224	0.04076100	0.05176534	0.4310749	0.03062009	0.01967695	0.08531767	0.01248937
Torpor.2.1	Torpor.2.1	torpor	0.05019095	0.000885359	0.000927175	0.02827481	0.006133757	0.03639792	0.06829312	0.2954151	0.03084727	0.01537112	0.22947118	0.01150312
Torpor.2.2	Torpor.2.2	torpor	NA	0.000951887	0.001027896	NA	0.006946379	0.03589682	0.07208993	0.3040495	NA	0.01594061	0.23718431	0.01067739
Torpor.3.1	Torpor.3.1	torpor	0.03720122	0.000477179	0.001842508	0.03805831	0.007366451	0.03983002	0.04850687	0.3277977	0.04667655	0.02111562	0.16513594	0.01052796
Torpor.3.2	Torpor.3.2	torpor	NA	0.000945255	0.001767801	NA	0.007212473	0.03639792	0.04059032	0.3329776	0.03001228	0.02522184	0.16333062	0.01022526
Torpor.4.1	Torpor.4.1	torpor	0.07417936	0.001973448	0.001550475	0.03300582	0.008382250	0.04152143	0.09470313	0.3784183	0.02936817	0.01976743	0.36551915	0.01410959
Torpor.4.2	Torpor.4.2	torpor	NA	0.001998136	0.001930635	NA	0.008330294	0.04298568	0.09555982	0.3832769	0.03218875	0.02031878	0.36130509	0.01453386

Load the file into R

data <- read.csv("data.csv", stringsAsFactors = FALSE) rownames(data) <- data\$SampleID fsdata <- data[-c(1:2)]

(Optional) Data imputation (Random Forest method) and quantile normalization

data <- rbioIMP(data[-c(1:2)], data\$Condition, data\$SampleID, method = "rf", iter = 10, ntree = 501) # imputation data <- rbioNorm(data, correctBG = FALSE) # normalization fsdata <- t(data)

Set up target variable

tgt <- as.factor(rep(c("control", "torpor"), each = 8))</pre>

Initial FS function

rbioRF_initialFS(objTitle = "cvt", fsdata, tgt, nTree = 501, errorbar = "SD", errorbarWidth = 0.4, yTxtSize = 6) # output list name: cvt_initial_FS

SFS-like FS function

rbioRF_SFS(objTitle = "cvt", cvt_initial_FS\$matrix_initial_FS, tgt, nTree = 501, symbolSize = 1, xLabel = "Features", yLabel = "OOB error rate") # output list name: cvt_SFS

Output

<u>Figures</u>

A – VI ranking after the **rbioRF_initialFS()** step; B – OOB error after the **rbioRF_SFS()** step

<u>Files (.txt)</u>

Initial FS step outputs the results into **cvt.initialFS.txt**. See a truncated portion below:

<pre>\$matrix_initial_FS</pre>		an a	The Manufacture and the second			승규에 참 같은 수 있는 것 같은 것 같은 것 같은 것 같이 다.
dgl-miR	-22-5p dgl-miR-876-5p	dgl-miR-21a-3p d	gl-miR-18a-3p	dgl-miR-16-3p	dgl-miR-142b-5p	dgl-miR-191-5p
Control.1.1 0.02	988938 0.058773318	0.6464010	0.07383765	0.007886430	0.03189701	0.7837999
Control.1.2 0.02	988938 0.049030504	0.6464010	0.05877332	0.007886430	0.03189701	0.7837999
Control.2.1 0.03	852812 0.052134880	0.7837999	0.07383765	0.007886430	0.02437997	0.5277544
Control.2.2 0.03	852812 0.052134880	0.6464010	0.06503953	0.007886430	0.02437997	0.5277544
Control.3.1 0.02	988938 0.049030504	0.7837999	0.07383765	0.009068414	0.02772046	0.6464010
Control.3.2 0.03	189701 0.046021137	0.7837999	0.07383765	0.007886430	0.02772046	0.5277544
Control.4.1 0.03	189701 0.046021137	0.7837999	0.07383765	0.007886430	0.02772046	0.5277544
Control.4.2 0.02	988938 0.009068414	0.7837999	0.08295620	0.007886430	0.03189701	0.5277544
Torpor.1.1 0.04	903050 0.027720457	0.6464010	0.06503953	0.014003746	0.07383765	0.7837999
Torpor, 1, 2 0, 04	602114 0.007886430	0.5277544	0.05877332	0.017259277	0.03346258	0.7837999
Torpor.2.1 0.04	602114 0.009068414	0.6464010	0.05877332	0.010759519	0.04903050	0.7837999
Torpor.2.2 0.04	903050 0.033462584	0.5277544	0.05213488	0.009068414	0.03189701	0.7837999
Torpor. 3.1 0.08	295620 0.029889377	0.5277544	0.05877332	0.010759519	0.03189701	0.7837999
Torpor.3.2 0.04	108325 0.027720457	0.5277544	0.05213488	0.010759519	0.03583229	0.6464010
Torpor.4.1 0.03	852812 0.027720457	0.5277544	0.06190643	0.009068414	0.05213488	0.7837999
Torpor.4.2 0.04	602114 0.027720457	0.5277544	0.05213488	0.007886430	0.02988938	0.7837999
dol-miR	-23a-5n dol-miR-34a-5	dol-miR-219a-50	dol-miR-106h-	5n dal-miR-196	6a-5p	01/05/555
Control 1.1 0.0	2772046 0.0460211	0.012874604	0.082956	20 0.0140	80375	
Control 1.2 0.0	2772046 0.0410832	6,010759519	0.106062	46 0.0140	00375	
Control.2.1 0.0	3189701 0.0490305	0.012874604	0.096713	94 0.0140	00375	
Control.2.2 0.0	3346258 0.0460211	0.014003746	0.096713	0.010	75952	
Control 3 1 0.0	4108325 0.0334625	8 0.007886430	0.106062	46 0.012	87460	
Control 3 2 0.0	4108325 0 0521348	8 0 00068414	0.058773	37 0.0120	87460	
Control 4 1 0.0	2988938 0.0521348	R 0.009068414	0.106067	46 0.017	25928	
Control 4 2 0.0	3583229 0 0490305	0 010759519	0.073837	65 0.017	25028	
Tornor, 1, 1 0, 0	2437997 0.0521348	R 0.007886430	0.126026	91 0.019	71243	
Torpor 1.2 0.0	2088038 0.0521348	8 0.00068414	0.126026	01 0.012	87460	
Torpor 2 1 0.0	2088038 0 0650305	0.007886430	0 106067	46 0.024	37007	
Torpor 2.2 0.0	2437997 0.0738376	5 0.007886430	0.106062	46 0.012	87460	
Torpor 3.1 0.0	3583729 0 0410832	6 007886430	0.046021	14 0.010	71243	
Torpor. 3.2 0.0	3852812 0.0490305	0.007886430	0.126026	0.012	87460	
Torpor 4.1 0.0	2437997 0.0619064	8 0.010759519	0.046021	14 0.0140	88375	
Torpor.4.2 0.0	2437997 0.0587733	0.010759519	0.126026	91 0.014	00375	
1010011112 010	2457557 010507755	0.010/000010	UTILUULU		00070	
Sfeature initial FS						
[1] "dol-miB-22-50"	" "dal-mi8-876-5p"	"dol-miR-21a-3p"	"dol-miR-18a	-3p" "dal-mi	R-16-30" "dol-	niR-142b-50"
[7] "dol-miR-191-5	n" "dol-miR-23a-5n"	"dol-mi8-34a-5n"	"dol-miR-210	a-5n" "dol-mil	R-106b-50" "dol-	niR-196a-50"
THE MAX. CONT. ACT. R	E SEALDERLER	An South Strange	AAA.DAG.AAA	MARKE MANINA	ARRANER ARAN	VALLARY RE
Srecur vi summarv						
••••••••••••••••••••••••••••••••••••••	Target	Mean SD	SEM Ra	ink		
dal-miR-22-5p	dal-miR-22-5p 8.9	2779547 0.5460166	0.07721840	1		
dol-mi8-876-5p	dal-miR-876-5p 8.6	1995805 0.6601663	0.09336161	2		
dol-miR-21a-3p	dol-miR-21a-3p 6.0	5579645 0.5698496	0.08058890	3		
dol-miR-18a-3p	dol-miR-18a-30 5.6	8667940 0.5734619	0.08109976	4		
dol-mi8-16-30	dol-mi8-16-30 4.9	8389685 0.6000285	0.08485684	5		
dol-miR-142b-5p	dol-miR-142b-5p 3.5	5454204 0.5680016	0.08032756	6		
dol-mi8-191-50	dal-miR-191-50 2.7	2445429 0.8626225	0.12199324	7		
dol-miR-23a-5p	dol-mi8-23a-50 1.9	0164165 0.8327736	0.11777197	8		
dol-miR-34a-50	dol-miR-34a-50 1.7	9434591 0.9264354	0.13101776	9		
995 IIIII 379 30	995 HAN 240 20 11/1	121224 012604334	VI AVAUAT IV	-		

SFS step outputs the results into **cvt.SFS.txt**. See a truncated portion below:

\$sele	cted_fe	eatures							
[1] "	dgl-miF	R-22-5p"	"dg	l-miR-876-5p"	"dgl-miR-21a-3p	" "dgl-miR-18a	-3p" "dgl-miR	-16-3p" "dgl-m	iR-142b-5p"
1,438 7,79									
\$feat	ure_sub	osets_wi	th_min	OOBerror plu	s_1SD				
[1]	6 7 8	3 11							
\$00B_	error_	rate_sum	mary						
Fe	atures	Mean		SD	SEM				
1	1	0.22125	0.0383	320114 0.0054	19282				
2	2	0.07000	0.0205	516295 0.0029	01442				
3	3	0.00500	0.0171	127970 0.0024	22261				
4	4	0.05750	0.0330	023646 0.0046	70249				
5	5	0.00375	0.0149	993621 0.0021	20418				
6	6	0.00000	0.0000	00000 0.0000	00000				
7	7	0.00000	0.0000	000000 0.0000	00000				
8	8	0.00000	0.0000	000000 0.0000	00000				
9	9	0.00125	0.0088	338835 0.0012	50000				
10	10	0.00125	0.0088	338835 0.0012	50000				
11	11	0.00000	0.0000	000000 0.0000	00000				
12	12	0.00125	0.0088	338835 0.0012	50000				
+0.00									
\$212	matrix	dal miD	22 50	dal miD 076	En dal miD 21n 2n	dal mil 10a Ja	dal miD 16 Ja	dal miD 143h Er	27
Contr		agt-mik	-22-30	0 0507722		0g1-m1R-188-3p	001-m1K-10-3p	001-m1K-1420-50	
Contr	01.1.1	0.02	900930	0.030//33		0.0/303/03	0.00/000430	0.03109/01	
Contr	01.1.2	0.02	900930	0.0490303		0.03077332	0.007000430	0.03109/01	
Contr	01.2.1	0.03	052012	0.0521340		0.07505705	0.007000430	0.02437997	
Contr	01 3 1	0.03	092012	0.0021040	0 0 7837000	0.00303333	0.007000430	0.02437337	
Contr	0137	0.02	180701	0.0490303	27 0.7837000	0.07383765	0.009000414	0.02772040	
Contr	01 4 1	0.03	180701	0.0460211	37 0.7837000	0.07383765	0.007886430	0.02772046	
Contr	01.4.2	0.02	850880	0.0000684	14 0.7837999	0.08295620	0.007886430	0.02772040	
Torno	r 1 1	0 04	903050	0 0277204	57 0 6464010	0.06503053	0 014003746	0.03109701	
Torpo	r. 1. 2	0.04	602114	0.0078864	30 0.5277544	0.05877332	0.017259277	0.03346258	
Torpo	r.2.1	0.04	602114	0.0090684	14 0.6464010	0.05877332	0.010759519	0.04903050	

Quick start guide for all-in-one command version

File layout

Format: csv

10-01 2	Filter													
	SampleID	Condition	dgl-miR- let-7f-5p	dgl-miR- ³ 1a-5p	dgl-miR- 1b-5p	dgl-miR- 10b-5p	dgl-miR- 16-3p	dgl-miR- ⁼ 18a-3p	dgl-miR- [©] 20a-5p	dgl-miR- ⁼ 21a-3p	dgl-miR- 22-5p	dgl-miR- 23a-5p	dgl-miR- [©] 26a-5p	dgl-miR- 27a-5p
Control.1.1	Control.1.1	control	0.11190995	0.002383542	0.002820877	0.05379724	0.009063634	0.08077205	0.13679458	0.6656084	0.03721601	0.03380627	0.46552676	0.01998478
Control.1.2	Control.1.2	control	NA	0.003903241	0.003641357	NA	0.008476861	0.07031616	0.15414938	0.6286915	0.03491059	0.03459015	0.49653253	0.01969414
Control.2.1	Control.2.1	control	0.10776942	0.003421941	0.002178203	0.04467675	0.009056922	0.09235496	0.13899680	0.8224800	0.04485433	0.03801253	0.47693178	0.02621919
Control.2.2	Control.2.2	control	A/A	0.003404393	0.003237942	NA	0.011286178	0.09299734	0.15677298	0.7959151	0.04781522	0.03705494	0.51859333	0.02683424
Control.3.1	Control.3.1	control	0.06178795	0.001899035	0.001980194	0.06600755	0.011137533	0.10414508	0.14287847	1.3669317	0.04601862	0.06251752	0.30628346	0.02966780
Control.3.2	Control.3.2	control	NA	0.002950592	0.003332281	NA	0.010973620	0.10856769	0.15407398	1.3620858	0.05105282	0.06552714	0.28648931	0.02691668
Control.4.1	Control.4.1	control	0.10155391	0.005370459	0.002657407	0.05360694	0.009956980	0.12158187	0.25091706	1.0141519	0.04111087	0.04040757	0.47788463	0.03005951
Control.4.2	Control.4.2	control	N/A	0.006303695	0.003616004	A/A	NA	0.13678671	0.21003632	1.0395482	0.03817431	0.04649464	0.49774289	0.03127912
Torpor.1.1	Torpor.1.1	torpor	0.06219157	0.001090033	0.001017847	0.02511691	0.009941763	0.04249195	0.06427207	0.4138845	0.03260618	0.01915703	0.26681574	0.01096216
Torpor.1.2	Torpor.1.2	torpor	NA	0.001005065	0.001634836	NA	0.009138224	0.04076100	0.05176534	0.4310749	0.03062009	0.01967695	0.08531767	0.01248937
Torpor.2.1	Torpor.2.1	torpor	0.05019095	0.000885359	0.000927175	0.02827481	0.006133757	0.03639792	0.06829312	0.2954151	0.03084727	0.01537112	0.22947118	0.01150312
Torpor.2.2	Torpor.2.2	torpor	NA	0.000951887	0.001027896	NA	0.006946379	0.03589682	0.07208993	0.3040495	NA	0.01594061	0.23718431	0.01067739
Torpor.3.1	Torpor.3.1	torpor	0.03720122	0.000477179	0.001842508	0.03805831	0.007366451	0.03983002	0.04850687	0.3277977	0.04667655	0.02111562	0.16513594	0.01052796
Torpor.3.2	Torpor.3.2	torpor	NA	0.000945255	0.001767801	NA	0.007212473	0.03639792	0.04059032	0.3329776	0.03001228	0.02522184	0.16333062	0.01022526
Torpor.4.1	Torpor.4.1	torpor	0.07417936	0.001973448	0.001550475	0.03300582	0.008382250	0.04152143	0.09470313	0.3784183	0.02936817	0.01976743	0.36551915	0.01410959
Torpor.4.2	Torpor.4.2	torpor	NA	0.001998136	0.001930635	NA	0.008330294	0.04298568	0.09555982	0.3832769	0.03218875	0.02031878	0.36130509	0.01453386

Install RBioFS

install.packages("devtools") # (optional) if no devtools is installed devtools::install_github("jzhangc/git_RBioFS/RBioFS", repos = BiocInstaller::biocinstallRepos())

Set working directory

setwd("working directory")

One line command

rbioFS(file = "test.csv", impute = TRUE, imputeMethod = "mean", quantileNorm = TRUE, nTree = 501, initialFS_errorbar = "SD", plot = TRUE)