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Freezing and anoxia stresses induce expression of metallothionein in the foot

le and |

eas of the marine gastropod Littorina littorea
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Summary

Differential sereening of clNA libraries constructed
from the foot muscle of marine snails Ligoring lnorea
revealed several eDNAs that are upregulated during
anoxia or freering exposures, environmeatal stresses that
are naturally endured by this species. One full-length
clone of 1196 nucleotides (GenBank accession mumber
AYDII79) hybridized with a 1 2Hknuc,
morthern blots and encoded a 100-ami
was identified as belonging o the

Northern blot analysis showed that L. fivorea MT was
upregulated in both foot mscle and hepatopancreas in
response 1o both frecring and anoxia stresses: within 1h
of the beginning of the stroess transeript levels rose 2.5« to
siafuld of control levels, reaching maximal levels at 12 or
24 h. After 24 h recovery from either stress. tramseript
levels were reduced again in three cases but remained
clevated in b from imetreated snails.
) lation of MT during environmental stress could

family. [ fitores MT shared 45% and 56% identity
with the copper- and cadmivm-binding MT isoforms,
from another Helix pomaria and
43-47% identity with marine hivalve MTs. The L finorea
sequence included the molluse-specific C-terminal matil
CyaeXeCyae N Cyse ThroGly-X(3-CyseNoCys-X( 3 Cyse
NeCyseLys that identifies it as o family 2 (mollusc) MT,

aerve ane or more possible roles, including @ function in
antioxidunt defense.

Key wonds: cnviranmental stress, gene cxpression. metallothioncin,
invertcbrate, anacrobiosis. frecee tolerance, periwinkle, Litioring
litnevia
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clone of 1196 nucleotides (GenBank accession mumber
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wis identilied as belonging i ihe hioncin (M1}
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clevated in b from imetreated snails.
) lation of MT during environmental stress could

family. L. fitores MT shared 45% and 56% identity
with the copper- and cadmivm-binding MT isoforms,
from another Helix pomaria and
43-47% identity with marine hivalve MTs. The L limorea
sequence included the molluse-specific C-termi molil
CyaeXeCyae N Cyse ThroGly-X(3-CyseNoCys-X( 3 Cyse
XeLys-Lys that identifies it as 2 family 2 {mollusc) MT.

serve one or more possible roles, including a function in
antioxidunt defense.

Key wonds: cnviranmental stress, gene cxpression. metallothioncin,
invertcbrate, anacrobiosis. frecee tolerance, periwinkle, Litioring
litnevia

13



Glycogen
P \1 ep
Glucose-1-P

ATP  ADP l-
LS

Glucose Glucose-6-P

0,+¢ == O,  superoxide radical

0, + H,0 == HOO'+OH " hydroperoxyl radical

pai
HOO'+ € + H' memp H.0, ~hydrogen peroxide e

Fructose-1,6 -P,

[ — | Aootase

DHAP =——= Glyceraldehyde-3-P

H0,+e —} 'OH+0H" hydroxyl radical

- S e
Fe (II) + O, === Fe (II) + O, . e

Fe (II) + H,0, —’ Fe (III) + ‘OH+0H" Fenton reaction
02'- +H0, —} 0, + 'OH+0H" Haber-Weiss reaction

Phosphoenolpyruvate
ADP
['PK nADH NAD

Pyruvate Lactate

Mitochondrial
tricarboxylic acid cycle

ATP

05

Glycogen
B
&P
c
Glucose-1-P c g
ATR ADP 8o
s
©
Glucose Glucose-6-F 04 GPa lg-§
lm 03 activity 6 ©
Fructose 66 (mM) s . ooz Wi gz
ATP . e o E 2
| —~ .
ADP - * o 52
o
Fructose-1,6 -, o 4 B 1z 16 20 X
&
= Adolse =£
DHAP S—= Glyceraldehyde-3-F = <
HADH NAD Py % |
o - PRK2 200 i
MD( wol-3-P NAGH 1.3-0PG {\ 600 26P2
e AP ¢ [T A ool £
ok w0l ., o {40 o £
o - \ - c'e
G 50 bn 200 2%
¥ e = 9
oy 0 S S5
R A m £
g
| e . $3
Phosphoenolpyruvate 3 th £
- : synthesis £
IR NaDH NAD PK [} PK 5%
ATP activity :ﬂ,'\ 15 155 Ala 22
A ‘ st
Pynivate Lactate (Urg) &%
- = E
L s
L

A\ 10 (mM)
e o
LI

b

ce

Normoxic 48 h Hypoxic

e - . . L]
( Mitochandrial % t e e s m
i i
___l_iarbow! c ackd cycle Hours of Anoxia




Protein to GWW ratio

Normoxia

L and Celfular Biochemixtny 133; 121-127, 2002
02 Kl Acadetnbe Publishers, Printed in the Netherlams

Reversible suppression of protein synthesis in
concert with polysome disaggregation during
anoxia exposure in Liftorina littorea
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Abstract

Many marine invertebrates can live without oxygen for long periods of time, a capacity that is facilitaed by the ability to sup-
press metabolic rate in anoxia to & value that is typically less than 10% of the normal aerobic rate. The present study demon=
strates that a reduction in the rate of protein synthesis is one factor in the overall anoxia-induced metabolic suppression in the
marine snail, Littorina littorea. The rate of PH]leacine incarporation into newly wranslated pratein in hepatapancreas iso-
lated from 48 h anoxic snails was determined to be 49% relative o normoxic controls. However, protein concentration in
hepatopancreas did nat change during anoxia. suggesting a coordinated suppression of net protein turnover. Analysis of
it mples il osed to 24-72 hanoxia showed # pradual di ion of pol i

A re-aguregation of monosomes into polysames was observed afier 3 b of aerobic recovery. Analysis of fiactions from the
ribosome profile using radiolabeled probe to detect a-tubulin transeripes confirmed & general decrease in protein translation
during anoxia expasure (transcript association with polysames decreased) with a reversal during aerabic recovery. Westem
blotting of h samples from normoxic, 24 h anoxic, and 1 h acrobic recovered snails demonstrated that elF-2a is
substantially phosphorylated during anoxia exposure and dephosphorylated during normoxia and aerobic recovery, suggest-
ing a decrease in transkation initiation during anaxia exposure. These resul that i ion during anoxia
exposure in L. fitorea involves a decrease in protein wranslation. (Mol Cell Biochem 232 121-127, 2002)
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