

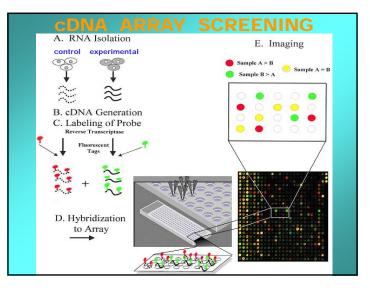
- Seasonal phenomenon
- Need polyunsaturated

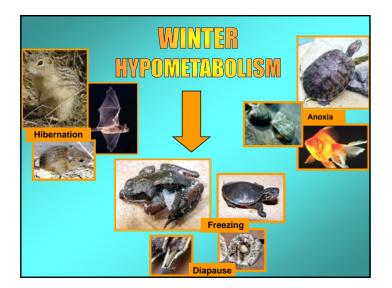
- DNA/RNA synthesis
- **Protein synthesis**
- Fuel metabolism
- Ion pumping
- Work done

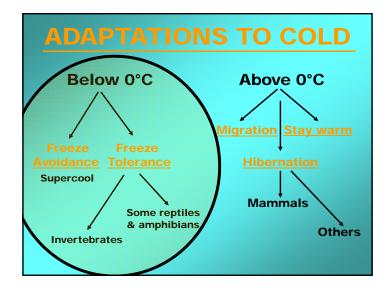
ATP turnover to <5% of normal

METABOLIC RATE DEPRESSION

- 1. Slow Cell Processes
- 2. Use protein kinases (activate SAPKs)
- 3. Selective gene activation

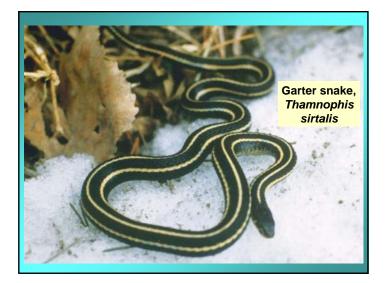

METABOLIC RATE DEPRESSION


- Protein Synthesis slows to 1%
- Pumps & Channels closed
- Energy Production slows to 5%
- Energy Utilization slows to 2%
- · Few 'SAP' kinases activated
- Gene 'inactivation'
- Few Genes activated

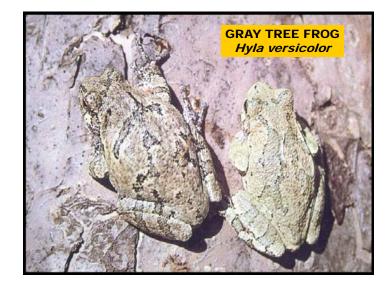

METABOLIC RATE DEPRESSION

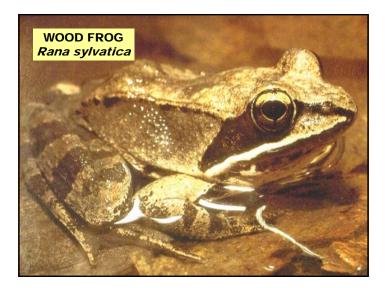
- Protein Synthesis slows to 1%
- Pumps & channels closed
- Energy Production slows to 5%
- Energy Utilization slows to 2%
- Few 'SAP' kinases activated

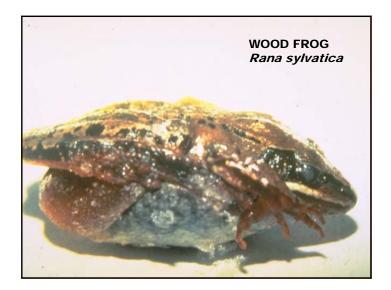
Gene 'inactivation' (miRNA)
Few Genes activated (1 % only)

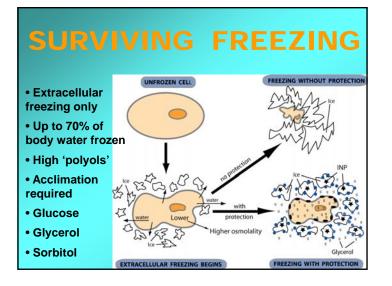


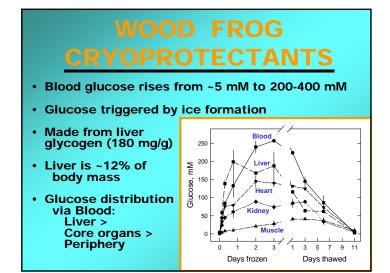
FREEZE TOLERANT ANIMALS

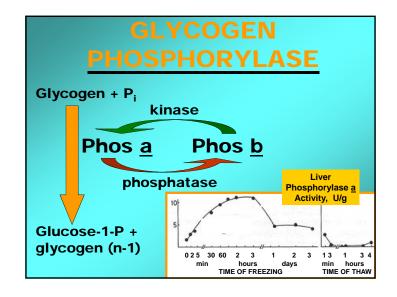

- TERRESTRIAL INSECTS
- INTERTIDAL MOLLUSCS & BARNACLES
- AMPHIBIANS & REPTILES:
 - FROGS (6 species)
 - HATCHLING PAINTED TURTLES
 - GARTER SNAKES
 - LIZARDS (some)





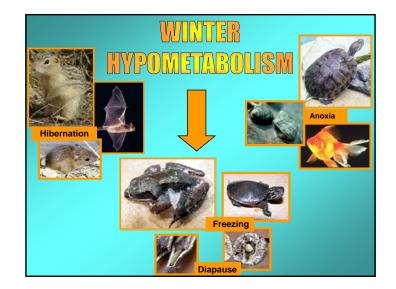

A WOOD FROG LIFE


AUTUMN WINTER	spent in the woods, eating & growing hide in insulated spots on forest floor freeze when hibernation site falls to about -2°C; survive frozen to -10°C thaw & revive, move to woodland ponds
Mating & egg laying - within 1 week in early spring Eggs & tadpoles - develop fast before temporary ponds dry out; metamorphosis in early summer	


Frogs of various colours are numerous in those parts as far North as the latitude 61[•]....as the Winter approaches, they burrow under the moss, at a considerable distance from the water, where they remain in a frozen state till the Spring. I have frequently seen them dug up with the moss (when pitching tents in Winter) frozen as hard as ice; in which state the legs are as easily broken off as a pipe-stem, without giving the least sensation to the animal; but by wrapping them up in warm skins, and exposing them to a slow fire, they soon recover life...? Samuel Hearne

A Journey from Prince of Wales's fort in Hudson's Bay to the Northern Ocean in the Years 1769-1772

TO SURVIVE FREEZING


- Alter metabolism to synthesize
 cryoprotectants (polyols, sugars)
- Defend against intracellular desiccation

Suppress metabolic rate

ACCOMPLISHED BY:

- Activate signaling enzymes in every cell
 - 'SAP' kinases
 - Role: reversible controls on cell processes

★ Up-regulate selected genes

FREEZE INDUCED CHANGES

- Gene 'inactivation'
- Protein Synthesis slows to 1%
- Pumps & Channels closed
- Energy Production slows to 5%
- Energy Utilization slows to 2%
- Few 'SAP' kinases activated
- Gene inactivation (miRNA)
- Few Genes activated

FREEZE-INDUCED GENES: WOOD FROGS

cDNA Library / Gene Chip

- Only 1 % of genes "on"
- The Unknowns: Fr10, Li16, FR47

Storey KB 2004. Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48, 134-145

THE UKNOWNS : Li16, FR10, FR47

- Novel gene sequences discovered by cDNA library screening
- · Genes moved to other cell types
- Genomic sequences now known
- On-Off Regulation: Protein Kinases
- Proteins are biomanufactured in our lab
- Non freeze tolerant cells can be transformed

FUNCTION OF THE UNKNOWN PROTEINS Express genes in cells in culture - Li16, FR10 - insect or mammal cells Expression of Li16 & FR10

% Cell

Li16

FR10 NT none

- protects cultured cells from freezing damage
- Li16 is intracellular
- FR10 is exported
- Both bind to membranes

Unique Animal Stress Model

Tolerance of extreme

ischemia and hyperglycemia

whole-body freeze tolerance

Vertebrate

Tissue cryopreservation

ORGANS FOR TRANSPLANT

1. Scientific Solutions

A. IMMEDIATE: extend the viability of removed organs by hours/days

B. FUTURE:

- freeze organs to create organ banks
- stem cell research grow new organs
- C. FAR FUTURE:
 - cloning of tissues (one cell --> organ)
 - artificial tissues (from non-cell sources)

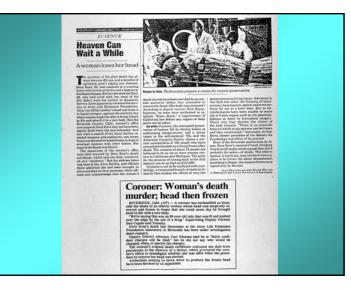
. XENOTRANSPLANTS

- Dangers and risks?
- E. Clone "NEAR-HUMANS" for parts:
 - Society plus science (+/- embryos)
 - Have your own clone, just in case?
 - The rights of a clone?

ORGANS FOR TRANSPLANT

Tens of thousands wait for a few organs

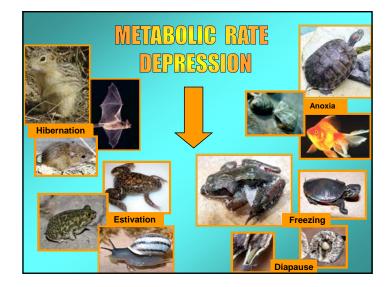
- who decides?
- should you be able to pay for an organ?


2. Society Solutions: Dollars, Science, Morals

- A. SELL ORGANS: \$\$ from rich to poor people Organs from poor to rich people Morally correct? How to regulate?
- B. Get organs by "PRESUMED CONSENT"
 - Will doctors revive or harvest?
 - How dead do you have to be?
 - Religious / spiritual implications

FREEZING HUMANS

DOES IT WORK ?


- A. Liquid Nitrogen Storage (-196°C)
 - frogs only to -20°C (cell destruction)
 - fragility/crush (neurons)
- B. Frozen Liquid Expands !
- C. Bits and Bobs
- D. Time to Preservation (oxygen lack, neurons)
- E. You've paid UPFRONT for "forever" !
- F. Legal implications (thawed by your kids)

FREEZING HUMANS

Is it correct to freeze humans and then bring them back in the future for "eternal life"?

- A. Who would be chosen for this (costly) procedure?
- B. How would we pay for re-animation and re-integration into society?
- for 20 subjects
- for 2000 subjects
- for 2 billion subjects
- C. Spiritual / Religious implications
- **D. Legal implications**

FREEZE T	OLERANCE
• J. STOREY	• A. DeCROOS
• D. McNALLY	• L. ZHENHONG
• J. MacDONALD	• J. DU
• T. CHURCHILL	• Q. CAI
• S. GREENWAY	• F. SCHUELER
C. HOLDEN	• S. BROOKS
• S. WU	• B. RUBINSKY
	• R. BROOKS
www.carletor	