

Stress Response & Adaptation: A New Molecular Toolkit for the 21st Century

Kenneth B. Storey, Carleton University, Ottawa, Canada www.carleton.ca/~kbstorey

Multiplex: Next Wave of Experimental Methodologies

What are we interested in? Biochemical Adaptations

- Search to identify principles of biochemical regulation across the animal kingdom
- Biochemical Unity: Principles of Biochemical Adaptation

- Single trained student
- SHORT periods of experiments / data mining
- Minimum amounts of tissues required
- MONEY needed. BIG MONEY !!

Multiplex technology

- Quantitatively measure multiple analytes in a single assay
 - i.e. 3-50 protein targets in 1 well
- Primarily <u>nucleic acid</u> and <u>protein</u> –based techniques
- Luminex: Best type of MULTIPLEX technology

Luminex data output 17:3 · Dots within the white circles · Each 'white circle' represent relative fluorescence measured by detection antibody represents a bead 4. type . · Relative fluorescence allows comparison of antigen levels between samples Also allows comparison of different antigen

regulation

(ENZYMES)

Application: Adaptation to environmental stress

(Relative abundance of protein A vs. B)

levels within single samples

Cellular Defense

Cellular pathways that are responsible for responding to &/or repairing cellular damage.

E.g. antioxidant enzymes, heat shock proteins, antiapoptosis, etc.

Protein Applications

- Commercial kits: Key targets of metabolic pathways
 - Detects total and phosphorylated targets
- Thousands of biomarkers available

Luminex: Heat Shock Proteins in Anoxia & Freezing

Luminex: Akt-mTOR network in Insect Cold Hardiness

Advantages of Multiplex

Akt / mTOR study

- Insulin signaling, protein synthesis regulations
- 11 phospho-protein targets

- 6 tissues to analyze
- 11 protein targets
- 66 Western blots
 - 6 control + 6 expt lanes per gel
- 300 µg protein per gel
- 792 data points
- Time: 12-14 weeks

Multiplex

- -1 well = 11 protein targets
- 1 kit = 96 individual sample wells
- < 30 µg protein per well
- -1 kit = >1000 data points
- Time: < 24 hours

Oxidative Stress Markers using Luminex Technology

MILLIPLEX[®] Oxidative Stress Panel

- Catalase
- PRX2 (PRDX2)
- SOD1
- SOD2
- TRX1

All analytes measured in

a single well!

- QuantiGene Plex
- Same technology: Immobilized oligonucleotides
- Direct measure of mRNA levels
- Custom-plex can measure 3-80 genes in 1 sample

miRNA: Multiplex them all

Journal of Molecular Cell Biology Advance antipologyant

The emerging roles of microRNAs in the molecular responses of metabolic rate depression

- Size ~22 nucleotides
- Highly conserved across species
- Bind to 3' UTR of mRNAs
- Exact repression mechanism(s) yet to be defined, but seem to include
 - Block translation of mRNA
 - Help bind mRNA into
 - stress granules - Target mRNA for
 - degradation

Summary: Multiplex in Functional Genomics

- Single assay, generate large amount of gene expression data
 - Maximize use of biological samples
 - -Minimize experimental time
- Specialized equipment
 - -Expensive start up cost \$\$
 - Cost of commercial kits
 ("home-made" kits can be created)

Multiplex Options: Classic Methods

- Multiplex PCR / qPCR
 - Multiple primer pairs
 - Simultaneous quantification of mRNA transcripts

Multiplex Options: Classic Methods

- Multiplex (not Luminex)
 - Efficient, but costly \$\$!
- Multiplex Western Cocktail
 - Multiple antibody
 - Simultaneous detection of targets

<section-header><section-header><section-header><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

- Arrays are available for mRNA, proteins, and microRNA
 - mRNA GeneChip: 10,000-20,000 gene expression
 - Protein Microarray: ~10,000 protein expression
 - microRNA GeneChip: 1,000 2,000 mature miRNAs

High-throughput technologies

- "Intellectual Fishing"
- Results are hugely informative, potentially generate hundreds of new directions

High-throughput screenings

- 'Old technology', still the principal approach
- Snapshot status of thousands of genes
- Identify unknown gene regulations
- Develop testable molecular hypotheses to support physiological observations

Beyond Gene Expression

- Advancement of assay technologies
 - Measure almost anything you want!

Cell Based Assays Anophage Anophage Anophage Cell Contention Cell Southers and Wound Heading Cell Southers and Wound Heading Cell Southers and Park Assays Cell Southers and Anophage Turner Cell Heading Turner Cell Heading Turner Cell Heading Turner Cell Heading Andholdy Trockson Torion English Tags Cell Souther Tags Chronic Results Fortune Tags Chronic Results Change Anophyn Torion Resource Anophyn Torion	Infectives Desease Research Exclosed Rajel Detection Vers Core Artiget Detection Hetaboten Research Upperstam Intertoition Read Tractice Assays mittike Control Vectors mittike Control Vectors	Can Conference Co	Easyme Activity 6 (60) Learnenia Activity 9 (60) Learnenia Activity 9 (60) Learnenia Activity 9 (60) Learnenia 9 (60) Learnenia 10) Learnenia Activity 10) Learnenia 10) Learnenia	
	withit Expression and Reporter Vectors mithit Processor Cole Collector mithits. Vittl Recent Collector Response Database Series (Damage Antiocalant Assays Data) (Tata Company and Repair Light Prevalution Providen Collector (Statute Rescrict Corpor Species (ROS) Assays		500 Transcription Factors - CALESE - CEEE (Transfer Set ¹⁰⁰) - 37-6 (c23 and cats) - 1204 - 12	See al induitor preveny anyo STEP Transfection - 02734 Induitos - 1273 Annyoto (201) - 126 Annyoto (201) - 136 Annyoto (201) - 136 Annyoto (201) - 136 Annyoto (201) - 13727 Annyot
			Cell-Based - Augustanization - Augustanization (2014 and Press) - Grit Core Phase Interconnection - Grit Core Providence Ventrane Provide - VITA LOG Providencian - Augusta Mandaman	

Oxidative Stress

 Commercial kits available to expand beyond enzyme assays

Antioxidant assays

Catalase Activity Assay (#STA-341) Glutathione Assay (#STA-312) HORAC (Hydroxyl Radical Antioxidant Capacity) Assay (#STA-346) ORAC (Oxygen Radical Antioxidant Capacity) Assay (#STA-345) Superoxide Dismutase (SOD) Assay (#STA-340) Total Antioxidant Capacity (TAC) Assay (#STA-360)

Lipid peroxidation

4-HNE (4-Hydroxynonenal) Assays and Reagents (#STA-338) 8-iso-Prostaglandin F2a Assay (#STA-337) Human Oxidized LDL ELISA Kits (#STA-388) MDA (Malondialdehyde) Assays and Reagents (#STA-332) TBARS Assay (#STA-330)

CELL BIOLABS, INC.

Oxidative Stress

DNA / RNA damage and repair

COTION Man Florencero Cortination Cortina

ROS assay

8-OHdG DNA Damage ELISA (#STA-320) 8-OHG RNA Damage ELISA (#STA-325) AP Sites Quantitation Kit (#STA-324) BPDE DNA Adduct ELISA (#STA-357) Checkpoint Kinase Activity Assays (#STA-414) DNA Double-Strand Break Assay (#STA-321)

Global DNA Methylation and Hydroxymethylation (#STA-381) UV Induced DNA Damage Kits (#STA-328)

Protein Oxidation

Advanced Oxidation Protein Products (AOPP) Assay (#STA-318) BPDE Protein Adduct ELISA (#STA-301) Oxidized/Nitrated Proteins (#STA-214) Protein Carbamylation ELISA (#STA-377) Protein Carbonyl Assays (#STA-308) Protein Nitration Assays and Reagents (#STA-303)

ROS assays

Hydrogen Peroxide and Peroxidase Assays (#STA-343) In Vitro ROS/RNS Assay (#STA-347) Intracellular ROS Assay (#STA-342)

CELL BIOLABS, INC.

What is the blueprint?

- New technologies = new approach
 What changes in the cell ?
- Gene expression changes
- New Proteins and new PTMs discovery + quantitation
- miRNA, small MW
- Incorporate new technology

Going forward

- Old vs. new technologies
 - Classic methodologies are still perfectly functional
 - New technologies provide same results at <u>faster rate</u>, <u>higher efficiency</u>
- Tailor your technologies to your lab!
 - Must be sustainable! \$\$\$
- In 2013, there WILL be a new machine / technology / assay.....

Stay Tuned!

