

HIBERNATION

13-LINED GROUND SQUIRREL *Ictidomys tridecemlineatus*

HIBERNATION

Little Brown Bat *Myotis lucifugus*

DAILY TORPOR

Microcebus murinus

ESTIVATION

Milk snail
Otala lactea

ESTIVATION

Spadefoot toad Scaphiopus holbrookii

ANOXIA

Painted turtle
Chrysemys picta

Red-eared turtle
Pseudemys scripta

Periwinke
Littorina littorea

FREEZING

Wood frog *Rana sylvatica*

MAMMALS ON ICE:

Metabolic Rate Reduction

www.carleton.ca/~kbstorey

- Seasonal phenomenon
- Pre-hibernation hyperphagia
- Gain up to 40% of body mass
- Need polyunsaturated fats
- Find hibernaculum: dark, near 0°C

- Metabolism inhibited causing Tb to fall
- Metabolic rate falls to <5% of normal
- Smaller animals cool down faster
- Q₁₀ values up to 15
- Reversible in arousal
- Torpor bout duration
 4 days to 2 weeks

PRINCIPLES OF HIBERNATION

- 1. Metabolic rate reduction
- 2. Control by protein kinases (SAPKs, 2nd messenger PKs)
- 3. Most Genes OFF
- 4. Selective gene activation

METABOLIG RATE DEPRESSION

Hibernation

Estivation

Anoxia

PRINCIPLES OF HIBERNATION

- 1. Metabolic rate reduction
- 2. Control by protein kinases (SAPKs, 2nd messenger PKs)
- 3. Most Genes OFF
- 4. Selective gene activation

 Same as with ALL MRD

METABOLISM IN HIBERNATION

- mRNA synthesis
- Protein synthesis
- Ion Pumping
- Fuel use (esp. CHO)
- O₂ consumed

ATP turnover ___ to <5% of normal

Metabolic Rate Depression CHANGES

- Few 'SAP' kinases activated
- * thousands of processes OFF
- Gene 'inactivation' (mRNA)
- Few Genes activated (1-2%)

PROTEIN KINASES

- Covalent modification by phosphorylation
- Families of protein kinases: PKA (cAMP), PKG (cGMP), CaM (Ca²⁺), PKC (Ca²⁺, PL, DG)
- SAPKs: daisy chain phosphorylations
- Regulation via interconversion of active vs subactive forms of protein substrates
- p38, ERK (1/2), JNK, AMPK, AKT (mTOR)

MRD CHANGES

Few 'SAP' kinases activated

Gene 'inactivation' (mRNA)

Few Genes activated (1-2%)

TURNING OFF GENES: Role of Epigenetics

Epigenetics:

- Stable changes in gene activity that do not involve changes in DNA sequence

Common mechanisms:

- DNA methylation
- Histone modification / histone variants e.g. acetylation, phosphorylation
 - Regulatory non-coding RNAs

Regulatory non-coding RNAs

microRNA

- Small RNAs ~22 nucleotides in length
- Highly conserved across species
- Bind to 3' UTR of mRNAs
- Could be 1000, affect 60 % of genes
- Disease involvement
- Act to :
 - Block translation of mRNA
 - Target mRNA for degradation

Turning it all off

Journal of Molecular Cell Biology Advance Access published December 21, 2010

doi:10.1093/jmcb/mjq045

Journal of Molecular Cell Biology (2010), 1-9 1

Review

The emerging roles of microRNAs in the molecular responses of metabolic rate depression

Kyle K. Biggar and Kenneth B. Storey*

Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

Correspondence to: Kenneth B. Storey, Tel: +613-520-3678; Fax: +613-520-3749; E-mail: kenneth_storey@carleton.ca

Metabolic restivation, a bolic states organisms a likely driver bolism and marily from examples fresponse to studies hav decrease procell cycle ar ous disease attack in hu

Biochimica et Biophysica Acta 1779 (2008) 628-633

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbagrm

Differential expression of microRNA species in organs of hibernal squirrels: A role in translational suppression during torpor

Pier Jr. Morin, Adrian Dubuc, Kenneth B. Storey*

Institute of Biochemistry and Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada KIS 586

ARTICLE INFO

Article history: Received 25 April 2008 Received in revised form 17 July 2008 Accepted 28 July 2008 Available online 5 August 2008

Reywords: MicroRNA Hibernation Spermophilus tridecentineatus Dicer

ABSTRACT

Mammalian hibernation includes long periods of profound torpor where the rates of all metabolic processes are strongly suppressed in a reversible manner. We hypothesized that microRNAs (miRNAs), small non-coding transcripts that bind to mRNA, could play a role in the global suppression of mRNA translation when animals enter torpor. Selected miRNA species (4–9 of the following: mir-1, mir-24, mir-15a, mir-16, mir-21, mir-122a, mir-143, mir-146 and mir-206) were evaluated in four organs of euthermic versus hibernating ground squirrels, Spermophilus tridecemlineatus using RT-PCR. Levels of mir-24 transcripts were significantly reduced in heart and skeletal muscle of torpid animals as were mir-122a levels in the muscle. Mir-1 and mir-21 both increased significantly in kidney during torpor by 2.0- and 1.3-fold, respectively. No changes were found for the four miRNA species analyzed in liver. Protein levels of Dicer, an enzyme involved in miRNA processing were also quantified in heart, kidney and liver. Dicer protein levels increased by 2.7-fold in heart during a bipartation but decreased the 60% in kidney. These data are the first respect their formatis levels increased.

METABOLIG RATE DEPRESSION

MRD CHANGES

- Few 'SAP' kinases activated
- Gene 'inactivation' (___ mRNA)
- Few Genes activated (1-2%)

Regulation of Gene Transcription

Beyond gene chips: transcription factor profiling in freeze tolerance

In: Hypometabolism in Animals: Hibernation, Torpor and Cryobiology (Lovegrove, B.G., and McKechnie, A.E., eds.) University of KwaZulu-Natal, Pietermaritzburg, pp. 101-108.

Factors

KENNETH B. STOREY

Factors

Factors

Institute of Biochemistry, Carleton University, Ottawa, Canada K1S 5B6; kenneth_storey@carleton.ca

Machinery

Abstract

The Wood Frog, *Rana sylvatica*, is one of several terrestrially hibernating anurans that display natural freeze tolerance. The multifaceted biochemical responses to the cellular stresses imposed when ~65% of total body water is converted to extracellular ice have

GENE CHANGES IN HIBERNATION

- Some Activated :
 - Mitochondrial Genes
 - AOE
 - FABP, CPT, etc.
 - Shock proteins (GRP, HSP)
 - Transcription factors
- DNA Chip ~1-2% 1

Where do we go from here?

Nature's Tools for MRD

- Novel Enzyme Controls
- Atrophy, Autophagy
- Turning it all off -- microRNA
- Epigenetics & adaptation
- Life span extension
- Antioxidant Defense
- Cell cycle suppression
- Unity through evolution

NEW DIRECTIONS

Novel Enzyme Controls

Available online at www.sciencedirect.com

Archives of Biochemistry and Biophysics 467 (2007) 10-19

Regulation of skeletal muscle creatine kinase from a hibernating mammal

Khalil Abnous, Kenneth B. Storey *

Institute of Biochemistry and Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada KIS 5B6

Received 29 May 2007, and in revised form 9 July 2007

Available online 22 August 2007

Abstract

Control over skeletal muscle energetics is critical in hibernation to sustain viability over weeks of thermogenesis during arousal. Creatine kinase (CK) has a key role in muscle energetics and this stusquirrels, Spermophilar richardsonii. CK activity was ~20% lower during hibernation than in euther mRNA was reduced by ~70%. Hibernator CK showed reduced affinity for ATP and creatine, compa that promoted endogenous protein kinase or phosphatase action, coupled with ion exchange chrom phosphate forms, showed that soluble CK from euthermic squirrels was a mix of phosphorylated a only phospho-CK was detected in hibernating animals. High and low phosphate CK froms had diff substrates but did not differ in stability to urea denaturation. About 20-25% of CK was bound to bound CK showed different kinetic responses to kinase and phosphatase treatments.

Comparative Biochemistry and Physiology, Part B 157 (2010) 310-316

Contents lists available at ScienceDirect

Comparative Biochemistry and Physiology, Part B

journal homepage: www.elsevier.com/locate/cbpb

Regulation of liver glutamate dehydrogenase by reversible phosphorylation in a

Ryan A.V. Bell, Kenneth B. Storey*

hibernating mammal

Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

ARTICLE INFO

Article history:

ABSTRACT

Gutamate dehydrogenase (GDH) is a key enzyme that links amino acid and carbohydrate metabolism in cells. Regulation is likely most important when organisms are confronted with extreme stresses such as the

associated with winter. Many small mammals, such as frontic, cope with these conditions by hibernating. Animals oblic rate is greatly suppressed, body temperature drops to et from fixed internal body stores of fuels. To investigate kinetic properties of GDH were analyzed in liver from trifferences in V_{max}, K_w glutamate, K_w ADP and inhibition data suggested an activation of the glutamate-oxidizing quent experiments suggested that the molecular basis of n phosphorylation state of GDH between euthermia and osphorylated and activated when animals transition into

Epigenetics in Adaptation miRNA [PLUS]

Mol Cell Biochem. 2010 Sep;342(1-2):151-61. Epub 2010 May 1.

Epigenetics in anoxia tolerance: a role for histone deacetylases.

Krivoruchko A, Storey KB.

Institute of Biochemistry, Carleton University, Ottawa, ON, Canada. krivoruchko@gmail.com

Abstract

The importance of epigenetics has been established in many key biological processes but the mechanism to animal survival of low oxygen conditions has never been examined. To establish mechanisms could be involved in natural anoxia tolerance, we have examined the anoxia-rest transcriptional silencers, histone deacetylases (HDACs), in tissues of a unique model for an turtle Trachemys scripta elegans. Transcript and protein levels of all five HDACs rose by 1.3-4 in skeletal muscle in response to 20 h of anoxia exposure. In addition, HDAC activity in the more response to 20 h of anoxia and levels of acetylated histone H3 (Lys 9 or Lys 23) decreased to liver displayed a milder response with HDAC1, -4, and -5 protein levels increasing by 1.6-2.1-1 acetylated histone H3 levels also decreased to 50-75% of control values. Only HDAC5 response to 1.1 acetylated histone H3 levels increased 2.1-2.3-fold and HDAC5 protein rose by 3.3-fold. Ove

Available online at www.sciencedirect.com

CRYOBIOLOGY

Cryobiology 53 (2006) 310-318

www.dacvier.com/logical/yeryo

Evidence for a reduced transcriptional state during hibernation in ground squirrels *

Pier Jr Morin*, Kenneth B. Storey

Institute of Biochemistry and Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K155B6

© 2006 Prous Science

Life span extension

Oxid Med Cell Longev. 2010 May-Jun;3(3):186-98.

Forever young: mechanisms of natural anoxia tolerance and potential links to longevity.

Krivoruchko A, Storey KB.

Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, CA.

Abstract

While mammals cannot survive oxygen deprivation for more than a few minutes without sus some animals have mastered anaerobic life. Freshwater turtles belonging to the Trachemy champion facultative anaerobes of the vertebrate world, often surviving without oxygen for me physiological and biochemical mechanisms that underlie anoxia tolerance in turtles include depression, post-translational modification of proteins, strong antioxidant defenses, activate transcription factors, and enhanced expression of cytoprotective proteins. Turtles are also keand display characteristics of "negligible senescence". We propose that the robust stress-tolong term anaerobiosis by turtles may also support the longevity of these animals. Many of the

natural anoxia tolerance, such as hypometabolito play important roles in mammalian oxygen-reoxygen could aid in the understanding and treat In the present review we discuss the recent adviturtles and the potential links between this toler:

Atrophy - Hypertrophy

Mol Cell Biochem. 2010 Nov;344(1-2):151-62. Epub 2010 Jul 9.

Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.

Tessier SN, Storey KB.

Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada.

Abstract

Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets

increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD).

MyoD mRNA transcript levels correlated with the rise in protein product levels and provided MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c erns with levels of both being highest during arousal from torpor. The data suggest a gene transcription in the selective adjustment of muscle protein complement over the

Failing heart

Unavoidable metabolic costs

Current Genomics, 2009, 10, 573-584

573

Perspectives in Cell Cycle Regulation: Lessons from an Anoxic Vertebrate

Kyle K. Biggar and Kenneth B. Storey*

Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

Abstract: The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the for anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous take place in order to facilitate vital reductions in ATP consumption. Such st modifications as well as the implementation of translation and transcription conthough it is clear that anoxic survival relies on the suppression of ATP consumanoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrates relievely tolerant turtles. Understanding how vertebrates respond to anoxia can have im cellular proliferation and hypoxic tumor progression are inescapably linked in lecular mechanisms controlling these processes have profound clinical consecutive.

c vertebrates and more specifically, the cor t, the activation of checkpoint kinases, and

Unity through Evolution

Int. J. Biol. Sci. 2010, 6

International Journal of Biological Sciences

Plasma membrane

© Ivyspring International Publisher. All rights reserved

Review

An Overview of Stress Response and Hypometabolic Strategies in Caenorhabditis elegans: Conserved and Contrasting Signals with the Mammalian System

WWCeD

Competitive

binding

Institute of Biochemistry, Carleton University, Ottawa, Ont., Canada

Correspondence to: Kenneth B. Storey, Institute of Bi Ottawa, Ont. K1S 5B6, Canada. Tel. +1 613 520 3678, Fax

Received: 2009.09.11; Accepted: 2009.11.25; Published: 2010.01.07

Abstract

Studies of the molecular mechanisms tha physiological) have long been used to ma model organism, Caenorhabditis elegans, 'dauer' stage. This period of developmen in metabolic rate, triggered by ambient ents. C. elegans employs a number of sign unfavourable conditions and survive for The suppression of cellular metabolism. survival of nematodes through the daue nisms that are fundamental to control general, mammalian systems are highly in temperatures and low oxygen), however signal transduction pathways of nematod protein targets in the stress response maintained, and often differ only in the outlines a framework of critical molecul as therapeutic targets for addressing dise

= Canonical DAF-2 signaling

Hibernators as a model for metabolic disease?

Type 2 Diabetes mellitus

Brazilian Journal of Medical and Biological Research (2012) 00: 1-13 ISSN 1414-431X Review

> Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

> > C.-W. Wu, K.K. Biggar and K.B. Storey

Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada

Abstract

An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibemation. Hibemations, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into domancy. Hibemation studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibemation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-/IPGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in humans.

- Hibernators show reversible insulin resistance
- Rapid weight gain, hyperinsulinemia during entry into hibernation, reversed in deep torpor
- Modifications to similar pathways: Glucose transport, Akt activity, PPAR-γ signaling

PRIMATE HIBERNATION!! Gray Mouse Lemur

Madagascar - western dry forests

MRD in Primate hibernation [Stress Kinases]

Gray Mouse Lemur

Warm Hibernator

- Daily and Seasonal Torpor
 - Uncharacterized model
 - First molecular studies

Biggar KK, Wu CW, Tessier SN, Zhang J & Storey KB

Primate Hibernation

Gray mouse lemur

- Novel model of hibernation
 - Short term torpor in mild climate (Tb falls to ~20°C)
- Reduction of ERK signaling
- Activation of JNK stress response

Hibernation and medicine

Adv Clin Chem. 2010;52:77-108.

Metabolic rate depression: the biochemistry of mammalian hibernation.

Storey KB, Storey JM.

Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada. kenneth_storey@carleton.ca

Abstract

During winter hibernation, small mammals fall into long periods of deep cold torpor where metabolic rate is suppressed 90% and core body temperature can fall to near 0 degrees C. Studies with hibernators illustrate the molecular regulatory mechanisms that coordinate the suppression of metabolic functions during torpor, reprioritize energy use, and preserve/stabilize macromolecules to support long-term viability during cold torpor. This review explores mechanisms including posttranslational modification of proteins, differential regulation of enzymes, global suppression of transcription and

translation including a ro transcription factors. The relevant to issues in clini and atrophy resistance.

Gerontology. 2010;56(2):220-30. Epub 2009 Jul 14.

Out cold: biochemical regulation of mammalian hibernation - a mini-review.

Storey KB.

Institute of Biochemistry, Carleton University, Ottawa, Ont., Canada. kenneth_storey@carleton.ca

Abstract

Hibernating mammals offer an intriguing example of natural torpor and illustrate the regulatory mechanisms that control

cell preservation strategies that support long-term viability in a hypometabolic state. These proving the hypothermic preservation of human organs for transplant, and guidelines that or as an intervention strategy in human medicine. Recent advances in hibernation research contribute to metabolic depression by orchestrating the global suppression of ATP-ation including multiple forms of post-translational modification of proteins/enzymes lOylation), mRNA storage mechanisms, and differential expression of microRNA species. also contributed new advances in understanding the range of cell functions that are out some critical preservation strategies that aid long-term viability in a torpid state. These perones and the implementation of the unfolded protein response, and the enhancement of s) to control the actions of extracellular proteases in clotting and inflammation responses.

Primates !!

Metabolic Rate Depression

- J. STOREY
- S. EDDY
- · D. HITTEL
- J. MacDONALD
- A. FAHLMAN
- P. MORIN
- C. HOLDEN
- H. MEHRANI
- J. NI

- M. HAPSATOU
- S. TESSIER
- M. WU
- S. BROOKS
- C. FRANK
- J. HALLENBECK
- D. THOMAS
- A. RUBTSOV
- J. STEWART

NSERC Funded by CRSNG NSERC Canada

www.carleton.ca/~kbstorey

